skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rowland, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Cambrian Tonto Group of the Grand Canyon was used by Edwin McKee in 1945 to make an insightful visual representation of how sedimentary facies record transgression across a craton—a common conceptual framework still used in geologic education. Although the tenets of McKee’s facies diagram persist, the integration of new stratigraphy, depositional models, paleontology, biostratigraphy, and other data is refining the underlying dynamics of this cratonic transgression. Instead of McKee’s interpretation of one major transgression with only minor regressions, there are at least five stratigraphic sequences, of which the lower three are separated by disconformities. These hiatal surfaces likely represent erosion of previously deposited Cambrian sediments that were laid down on the tropical, pre-vegetated landscape. Rather than being fully marine in origin, these sequences were formed by a mosaic of depositional environments including braided coastal plain, eolian, marginal marine, and various shallow marine environments. McKee, not having the insights of sequence stratigraphy and plate tectonics, concluded that the preservation of these sediments were due to predepositional topography and subsidence of the “geosyncline.” Our modern interpretation is that accommodation space was a result of eustasy and differential subsidence on the continental margin. Our modified depositional model provides a more effective teaching tool for fundamentals and nuances of modern stratigraphic thinking, using the Tonto Group as a still-influential type location for understanding transgressive successions. 
    more » « less
  2. We describe, interpret, and establish a stratotype for the Frenchman Mountain Dolostone (FMD), a new Cambrian stratigraphic unit that records key global geochemical and climate signals and is well exposed throughout the Grand Canyon and central Basin and Range, USA. This flat-topped carbonate platform deposit is the uppermost unit of the Tonto Group, replacing the informally named “undifferentiated dolomites.” The unit records two global chemostratigraphic events—the Drumian Carbon Isotope Excursion (DICE), when δ13Ccarb (refers to “marine carbonate rocks”) values in the FMD dropped to −2.7‰, and the Steptoean Positive Carbon Isotope Excursion (SPICE), when the values rose to +3.5‰. The formation consists of eight lithofacies deposited in shallow subtidal to peritidal paleoenvironments. At its stratotype at Frenchman Mountain, Nevada, the FMD is 371 m thick. Integration of regional trilobite biostratigraphy and geochronology with new stratigraphy and sedimentology of the FMD, together with new δ13Ccarb chemostratigraphy for the entire Cambrian succession at Frenchman Mountain, illustrates that the FMD spans ~7.2 m.y., from Miaolingian (lower Drumian, Bolaspidella Zone) to Furongian (Paibian, Dicanthopyge Zone) time. To the west, the unit correlates with most of the Banded Mountain Member of the ~1100-m-thick Bonanza King Formation. To the east, at Grand Canyon’s Palisades of the Desert, the FMD thins to 8 m due to pre–Middle Devonian erosion that cut progressively deeper cratonward. Portions of the FMD display visually striking, meter-scale couplets of alternating dark- and light-colored peritidal facies, while other portions consist of thick intervals of a single peritidal or shallow subtidal facies. Statistical analysis of the succession of strata in the stratotype section, involving Markov order and runs order analyses, yields no evidence of cyclicity or other forms of order. Autocyclic processes provide the simplest mechanism to have generated the succession of facies observed in the FMD. 
    more » « less